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Abstract

In this paper we study an extension of the Gram-Chalier (GC) density in Jondeau and Rockinger
(2001), which consists of a transformed (TGC) density according to the Gallant and Nychka (1987)
methodology. We derive TGC’s parametric properties such as unimodality, cumulative distribution,
higher-order moments and obtain closed-form formulae for expected shortfall (ES) and lower partial
moments. In an empirical application, we backtest the density, Value-at-Risk and ES of several asset
returns and show that our TGC provides accurate forecast for lower coverage levels. Finally, we present
a TGC density with time-varying conditional skewness and kurtosis.
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1 Introduction

Densities based on polynomial expansions (PE) have attracted great attention to model the departures from

normality shown in the empirical return distributions. Working with PE densities, we select a parent

distribution whose third and fourth moments can be modified to match the empirical distribution by

expanding a polynomial over the parent distribution. Bagnato, Poti and Zoia (2015) present a simple

theorem that links higher-order moments (skewness and kurtosis) of both distributions. They obtain different

orthogonal polynomials according to the parent density. The Gram-Charlier (GC) in Jondeau-Rockinger

(2001) (henceforth, JR) is the PE density with the standard normal as parent density. It has become very

appealing since the two parameters implied in the GC density directly correspond to the skewness and

excess kurtosis. See, among others, Beber and Brandt (2006), Christoffersen and Diebold (2006), Polanski

and Stoja (2010), Cheng, Philip, Zhou, Wang and Lo (2011), Ñíguez and Perote (2012), Liu and Luger

(2015), Lönnbark (2016), Del Brio, Mora-Valencia and Perote (2017), León and Moreno (2017) and Zoia,

Biffi and Nicolussi (2018). A special mention deserves successful application of GC densities to option pricing

such as Corrado and Su (1996), Corrado (2007), León Mencía and Sentana (2009) and Schlögl (2013) and

references therein.

An obvious problem of the GC density is that their unconstrained parameters can render negative

probabilities. This issue has mainly been dealt with two approaches. First, imposing parameter restrictions

that yield positive GC densities according to JR (2001). Second, transformations based on the methodology

of Gallant and Nychka (1987), (henceforth, GN). Indeed, the GN approach is followed by León, Rubio and

Serna (2005) (henceforth, LRS) who obtain a transformed GC (TGC) density in order to model conditional

higher-order moments based on GARCH dynamics for both skewness and kurtosis. In short, they allow asset

return innovations (or standardized errors) to be time-varying TGC (TV-TGC) conditionally distributed.

The LRS model, or TV-TGC density, has been used in numerous financial econometric applications due to

the increasing interest in modeling conditional higher-order moments. See, for instance, White, Kim and

Manganelli (2010), Alizadeh and Gabrielsen (2013), Auer (2015), Gabrielsen, Kirchner, Liu and Zagaglia

(2015), Anatolyev and Petukhov (2016), Kräussl, Lehnert and Senulyté (2016), Narayan and Liu (2018) and

Wu, Xia and Zhang (2019).

Unlike the GC density parameters, the TGC density’s can no longer be interpreted as the skewness and

kurtosis. In this paper, we study the parametric properties of the TGC and obtain the true higher-order

moments, which result to be non-linear functions of the GC parameters. Second, we also derive conditions

for unimodality, closed-form formulae for (i) the cumulative distribution function (cdf), and (ii) asymmetric

risk measures such as expected shortfall (ES) and lower partial moments (LPMs). Third, we illustrate the

practical use of this pdf through an application to model asset returns. For that purpose, we implement

the threshold GARCH (TGARCH) model of Zakoïan (1994) for the conditional volatility together with

either constant or TV skewness and kurtosis. We also obtain the closed-form expression for some truncated

moments of TGC in order to compute the unconditional variance of the error term under the TGARCH-TGC

model.

Fourth, we test the performance of the model through backtesting VaR and ES and the entire density

for several types of assets including, stock indexes, exchange rates, commodities and cryptocurrencies. For
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comparison purposes, we consider the normal distribution as the benchmark as well as two densities nested in

the GC pdf. Namely, the symmetric-GC pdf of Zoia, Biffi and Nicolussi (2018) and the skewed GC (with fixed

kurtosis) which we refer to as GCK and GCS, respectively. Unlike the TGC, the GCK and GCS densities

do model directly skewness and kurtosis. Density forecasting is evaluated through p-value discrepancy plots

along with proper scoring rules (Amisano and Giacomini, 2007). VaR and ES forecasting accuracy are tested

through the Du and Escanciano (2017) tests. Our results show that the TGC density performs rather well

in forecasting the whole density, VaR and ES, in particular for smaller quantiles (coverage levels of 1% and

2.5% for VaR and ES, respectively). We do not find any differences in performance with regard the type of

asset.

Fifth, we also estimate TV higher-order moments according to the TV-TGC conditional distribution

where the dynamics for the implied TGC parameters are now driven by the JR (2003) specification with

asymmetric responses of conditional skewness and kurtosis to positive and negative shocks.

The remainder of the paper is structured as follows. Section 2 deals with the GC pdf as a set-up base

of our analysis. In Section 3 we characterize the TGC pdf and study its parametric properties. In Section 4

we apply the TGC for modeling asset returns. Section 5 provides an empirical application to return series.

In Section 6 we extend the TGC to allow for time-varying conditional higher-order moments. Section 7

provides a summary of the conclusions. Appendix 1 includes some properties of Hermite polynomials used

throughout the paper. Finally, all proofs are included in Appendix 2.

2 The GC distribution

The GC pdf is defined according to following the polynomial expansion density:

g (x,θ) = φ (x)ψ(x,θ), (1)

where x ∈ R, θ = (θ1, θ2)
′ is the parameter vector, φ (·) is the pdf of the standard normal distribution and

ψ(·) is defined as
ψ(x,θ) = 1 +

θ1√
3!
H3(x) +

θ2√
4!
H4(x), (2)

such that Hk (·) denote the (normalized) Hermite polynomials in (54) in Appendix 1. The cdf, i.e.

G (x,θ) =
∫ x
−∞ g (u,θ) du, is given by

G (x,θ) = Φ (x)− θ1

3
√

2
H2 (x)φ (x)− θ2

4
√

3!
H3 (x)φ (x) , (3)

where H2(x) = x2−1√
2
, H3(x) = x3−3x√

3!
and H4(x) = x4−6x2+3√

4!
. More details about (3) and other properties

of the GC distribution can be seen in León and Moreno (2017).

2.1 Higher-order moments

It is verified that the first noncentral moments of x with pdf in (1) are given by Eg [x] = 0, Eg
[
x2
]

= 1,

Eg
[
x3
]

= θ1 and Eg
[
x4
]

= θ2 + 3. Thus, x is a standardized random variable (henceforth, rv) such that θ1

and θ2 correspond, respectively, to the skewness, s, and the excess kurtosis, ek, of g (x,θ). We can adopt the

following notations: θ1 = s and θ2 = ek. Since g (·) can take negative values for certain values of (s, ek), JR
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(2001) obtain numerically a restricted space Γ for possible values of (s, ek) where the polynomial function

of degree four in (2) becomes non-negative for every x, i.e. ψ(x,θ) ≥ 0. As a result, the points in Γ verify

that 0 ≤ ek ≤ 4, |s| ≤ 1.0493 and the range of s in Γ depends on the level of ek. The maximum size for

skewness is reached for ek = 2.4508. From now on, the GC pdf refers to g (x,θ) subject to θ ∈ Γ. The
envelope of Γ is exhibited, in continuous-line, in the left panel of Figure 1 (with ek and s in the x-axis and

y-axis, respectively)

Figure 1: The left panel exhibits the GC positivity frontier (continuous line) and its unimodality frontier (dash line).

The right panel plots the GC density for θ1= 0 (symmetric distribution) and different values of excess kurtosis, θ2.

2.2 Unimodality

Figure 1 (left panel) also plots the frontier (dashed-line) of the GC unimodal region, which tally with the

curves of Draper and Tierney (1972). The unimodality of g (·) does hold if there is only one real root in the
fifth-degree polynomial given by the condition: xψ−dψ/dx = 0 with ψ(·) in (2). Note that if g (·) is unimodal
then θ2 < 2.4 as shown analytically in Zoia (2010). The right panel of Figure 1 graphs the GC density with

θ1 = 0 (symmetric distribution) and different values of excess kurtosis, θ2, where the unimodality is verified

if θ2 = 2 but not for θ2 = 3.5. The GC distribution coincides with the standard normal for the case of

θ2 = 0.

3 The transformed GC distribution

As an alternative to the numerical method implemented in JR (2001) for building the restricted parameter

set Γ which ensures the positivity to the pdf in (1), Gallant and Tauchen (1989) suggested to square the

polynomial component ψ(·,θ), defined in (2), in the pdf g (·). As a result, we can obtain a new pdf q (·) that
is called the transformed GC (TGC) density given by

q (x,θ) = λφ (x)ψ2(x,θ), (4)

where the parameter λ verifies that the pdf in (4) is well-defined and hence, the integral of q (·) must be equal
to one. The inverse of λ is given by the expression: 1/λ = 1 + γ21 + γ22 where γ1 = θ1/

√
3! and γ2 = θ2/

√
4!.
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Note that, by transforming g (·) into q (·) the parameters in q (·) are not restricted now. However, by doing
so and contrary to the GC pdf, they cannot be interpreted as higher moments of the new density. Both

skewness and kurtosis under (4) are indeed non-linear functions of θ1 and θ2. If we expand the square of

ψ(x), we can express (4) as

q (x,θ) = λφ (x)
[
1 + 2γ1H3 (x) + 2γ2H4 (x) + 2γ1γ2H3 (x)H4 (x) + γ21H

2
3 (x) + γ22H

2
4 (x)

]
. (5)

Note that (4) is nested in a more general pdf that belongs to the SNP class introduced by Gallant and

Nychka (1987) and, also, by LMS (2009) who studied its parametric properties. Thus,

pn (x,ν) =
φ (x)

ν′ν

(
n∑
k=0

νkHk (x)

)2
, (6)

where ν = (ν0, ν1, . . . , νn)
′ ∈ Rn+1 and let ν0 = 1 to solve the scale indeterminacy in (6). Definitively, the

pdf in (6) directly nests (4) when n = 4, ν1 = 0, ν2 = 0 and νk = γk for k = 3, 4. In short q (x,θ) is a

restricted model of p4 (x,ν) when ν1 = ν2 = 0.

Finally, let Q (x,θ) =
∫ x
−∞ q (u,θ) du denote the cdf corresponding to the TGC distribution whose closed-

form expression is given in the following proposition.

Proposition 1. Let Q (x,θ) be the cdf of x with q (·) as pdf defined in (5), then

Q (x,θ) = λΦ (x) + 2λγ1Γ30 (x) + 2λγ2Γ40 (x) + 2λγ1γ2Γ34 (x) + λγ21Γ33 (x) + λγ22Γ44 (x) , (7)

such that Γij (x) ≡ Eφ [Hi (u)Hj (u) I (u ≤ x)] where I (A) = 1⇔ A is verified (otherwise, I (A) = 0).

Proof. See Appendix 2. �

To shorten, Γij (·) also denotes Γi (x) in (7) for j = 0. We can rewrite (7) as Q (x,θ) =
∑8
k=0 ωkBk (x)

such that ωk = ωk (θ) are coeffi cients depending on θ and Bk (x) =
∫ x
−∞ zkφ(z)dz is in (57) in Appendix 2.

3.1 Higher-order moments

Proposition 2. The first four noncentral moments of x with (5) as pdf are given by

Eq [x] = 4λγ1γ2, Eq
[
x3
]

= 2
√

6λγ1 + 48λγ1γ2,

Eq
[
x2
]

= 6λγ21 + 8λγ22 + 1, Eq
[
x4
]

= 4
√

6λγ2 + 72λγ21 + 120λγ22 + 3.
(8)

Proof. See Appendix 2. �
Let z denote the standardised rv of x, then z = a (θ) + b (θ)x where a = −bEq [x], b = 1/σx and

σ2x = Eq
[
x2
]
− Eq [x]

2. Hence, the pdf of z is obtained as 1
b q
(
z−a
b

)
. Both skewness and kurtosis of z are

given by

sz ≡ Eq
[
(a+ bx)

3
]

= a3 + 3a2bEq [x] + 3ab2Eq
[
x2
]

+ b3Eq
[
x3
]
, (9)

kz ≡ Eq
[
(a+ bx)

4
]

= a4 + 4a3bEq [x] + 6a2b2Eq
[
x2
]

+ 4ab3Eq
[
x3
]

+ b4Eq
[
x4
]
. (10)

Figure 2 exhibits the skewness and excess kurtosis region (shaded area) for the TGC distribution given

the above equations (9) and (10). Note that it contains part of the GC envelope. It is also displayed in
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dashed-line the skewness-excess kurtosis boundary (for a standardized distribution) ensuring the existence of

a density, i.e. s < ±
√
ek + 2. If we consider a grid for θj ∈ [−20, 20] with length of 0.01 where j = 1, 2, then

the TGC verifies that −1.4536 ≤ ekz ≤ 2.7208 and |sz| ≤ 1.2224. Hence, it does allow thinner tails than

those of the normal distribution. The maximum size of sz is reached for ekz = 1.0643. Both maximum and

minimum values of ekz are obtained for sz = 0. It can be seen that levels of ekz > 2.7208 are not captured

under the TGC and so, it is less flexible than the GC for more leptokurtic distributions.

Figure 2: Allowable skewness and excess kurtosis region for TGC pdf (shaded area). The dash-line represents the

skewness-excess kurtosis boundary. The GC envelope is represented by the continuous line.

Figure 3 depicts the skewness function (9). The left panel displays the range of sz as θ1 varies between

−5 and 5 given some selected values of θ2, i.e. sz
(
θ1, θ2

)
where θ2 ∈ {−3, 0, 3}. Note that the graph of

sz
(
θ1, θ2

)
behaves like an odd function with respect to θ1: sz

(
−θ1, θ2

)
= −sz

(
θ1, θ2

)
. The sign of sz

coincides with that of θ1 for θ2 = 0 as exhibited in the curve sz (θ1, 0). The maximum size of sz is also

obtained for θ2 = 0. The right panel shows the dynamics of sz as θ2 varies while θ1 is fixed, i.e. sz
(
θ1, θ2

)
with selected values for θ1 just the same as those for θ2 in the left panel. It is verified that sz (0, θ2) = 0 and

sz
(
−θ1, θ2

)
= −sz

(
θ1, θ2

)
when θ1 6= 0 (symmetry respecting the x-axis, denoted as θ2). We can see that

sz decreases (increases) if θ2 increases for θ1 = 3
(
θ1 = −3

)
.

Figure 4 is constructed in the same way as Figure 3 but now it exhibits the excess kurtosis function,

ekz, with kz defined in (10). The left and right panels display ekz
(
θ1, θ2

)
and ekz

(
θ1, θ2

)
, respectively.

Note that in the left panel, the graph ekz
(
θ1, θ2

)
behaves like an even function with respect to θ1:

ekz
(
−θ1, θ2

)
= ekz

(
θ1, θ2

)
. Hence, the sign of θ1 does not influence the behavior of ek. As a result,

we can see in the right panel that ekz
(
θ1, θ2

)
= ekz

(
−θ1, θ2

)
when θ1 6= 0. Higher values of ek are obtained

(in most cases) for θ1 = 0.

6



Figure 3: The left panel displays the skewness function sz
(
θ1, θ2

)
for θ1 given θ2 ∈ {−3, 0, 3}. The right panel

shows the range of skewness function sz
(
θ1, θ2

)
for θ2 given θ1 ∈ {−3, 0, 3} .

Figure 4: The left and right panels display excess-kurtosis functions ekz
(
θ1, θ2

)
and ekz

(
θ1, θ2

)
, for θ1, θ2 ∈

{−3, 0, 3} , respectively.

7



3.2 Unimodality

The unimodality of q (·) in (5) does hold if there is only one real root in the ninth-degree polynomial given by

the condition: 2ψdψ/dx−xψ2 = 0 with ψ(·) in (2). The right panel in Figure 5 contains the TGC unimodal

region such that the unimodality is verified for 0 ≤ ek < 2.7. Note that the unimodality property leads to

a slightly upper bound for ek under TGC than GC as can be exhibited when also plotting the GC frontier

under unimodality. The left panel in Figure 5 exhibits the values of θ1 and θ2 such that the unimodality is

verified.

Figure 5: The left panel contains the TGC unimodal region (shaded area) in terms of skewness-excess kurtosis. The

right panel exhibits the values of θ1 and θ2 such that unimodality holds. The dash line is the usual GC envelope.

Note that (9) and (10) are non-linear functions of θ1 and θ2. We are interested in studying the sensitivity

of these higher moments with respect to both parameters, and for the sake of simplicity we consider the

unimodality region. For that purpose, we simplify the non-linear relationship by adjusting a multivariate

polynomial curve fitting to each higher moment series. Specifically, following Amédée-Manesme, Barthélémy

and Maillard (2019), we implement a quadratic response surface model, i.e.

y = β0 + β1θ1 + β2θ2 + β3θ
2
1 + β4θ

2
2 + β5θ1θ2 + ε, (11)

where y denotes either sz or kz,1 and ε is a random variable with E (ε) = 0 and V (ε) = σ2ε. It is verified

that the R-squared is very high in both least squares regressions and all coeffi cients are significant. These
1Because of symmetry in Figure 5 (left panel) respecting the x-axis, we run equation (11) with sz > 0 and kz as dependent

variables. Similar conclusions are obtained for sz < 0.
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results are available upon request. Next, we obtain the elasticity measures defined as Ey,θi = ∂y
∂θi

θi
y , where

∂y
∂θi

= βi + 2βi+2θi + β5θj for i = 1, 2 and i 6= j. The main results are the following. First, Esz,θ1 > 0

and Ekz,θ2 > 0 for all points (θ1, θ2) that belong to the unimodal region. Second, |Esz,θ1 | > |Esz,θ2 | and

|Ekz,θ2 | > |Ekz,θ1 | in most cases. Finally, although both θ1 and θ2 influence sz and kz, the former seems to

be more relevant for skewness while the latter is so for kurtosis.

3.3 Asymmetric risk measures

We obtain the closed-form expressions under the TGC distribution for both ES and LPM.

3.3.1 VaR and Expected shortfall

The ES of the random variable x with pdf q (·) in (5) is obtained as Eq [x |x ≤ xα ] = 1
α

∫ xα
−∞ xq (x,θ) dx,

where xα ≡ Q−1 (α) is the α-quantile (or VaR), i.e. Q−1 (α) = inf {x |Q(x,θ) ≥ α}.

Proposition 3. Let ESq (α) = Eq [x |x ≤ xα ] denote the ES with pdf q (·) in (5), then

ESq (α) = δΓ100 (xα)+2δγ1Γ130 (xα)+2δγ2Γ140 (xα)+2δγ1γ2Γ134 (xα)+δγ21Γ133 (xα)+δγ22Γ144 (xα) , (12)

where δ ≡ λ/α and Γijk (x) ≡ Eφ [Hi (u)Hj (u)Hk (u) I (u ≤ x)].

Proof. See Appendix 2. �

To shorten, Γijk (·) also denotes in (12) both Γi (x) and Γij (·) for j = k = 0 and k = 0, respectively. We

can also rewrite (12) as ESq (α) =
∑9
k=0 ϑkBk (xα) where ϑk = ϑk (θ) are coeffi cients depending on θ and

Bk (·) given in (57) in Appendix 2. Finally, we also obtain the ES under the GC distribution given some

results in Proposition 3.

Corollary 1. Let ESq (α) ≡ Eq [x |x ≤ xα ] be the ES of x with pdf g (·) in (1) and xα ≡ G−1 (α) as the

α-quantile with cdf G (·) in (3), then

ESg (α) =
1

α
Γ100 (xα) +

γ1
α

Γ130 (xα) +
γ2
α

Γ140 (xα) , (13)

such that Γijk (·) can be seen in (12).

Proof. Given the results in Proposition 2, the proof is obtained straightforwardly. �

3.3.2 Lower partial moments

The LPMs, see Fishburn (1977), of order m for x with pdf in (5) and threshold of τ is defined as

LPMq (τ ,m) =

∫ τ

−∞
(τ − x)

m
q (x,θ) dx. (14)
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The LPM of order 1 is easily obtained as

LPMq (τ , 1) = τQ (τ ,θ)−Q (τ ,θ)ESq (Q (τ ,θ)) , (15)

such that ESq (Q (τ ,θ)) = Eq [x |x ≤ τ ] is the equation in (12). The LPM of order 2 is given by

LPMq (τ , 2) = τ2Q (τ ,θ)− 2τQ (τ ,θ)ESq (Q (τ ,θ)) + Eq
[
x2I (x ≤ τ)

]
, (16)

where Eq
[
x2I (x ≤ τ)

]
is given in the following result.

Corollary 2. Let Eq
[
x2I (x ≤ τ)

]
=
∫ τ
−∞ x2q (x,θ) dx with q (·) in (5) is obtained as

Eq
[
x2I (x ≤ τ)

]
= Q (τ ,θ) +

√
2λΓ200 (τ) + 2

√
2λγ1Γ230 (τ) + 2

√
2λγ2Γ240 (τ)

+2
√

2λγ1γ2Γ234 (τ) +
√

2λγ21Γ233 (τ) +
√

2λγ22Γ244 (τ) ,
(17)

where Q (·) is the cdf in (7) and Γijk (x) ≡ Eφ [Hi (u)Hj (u)Hk (u) I (u ≤ x)].

Proof. See Appendix 2. �

3.4 Alternative positive transformations

The SNP density in (6) nests some other GC expansion transformations used in the literature so as to ensure

positivity. First, we consider the case of squaring the terms of equation (2). This approach can be seen in

Ñíguez and Perote (2012) with pdf defined as

q̃ (x,ν) = λφ (x)
[
1 + ν21H

2
3 (x) + ν22H

2
4 (x)

]
, (18)

where ν = (ν1, ν2)
′ ∈ R2 and 1/λ = 1 + ν21 + ν22. The non-central moments are easily obtained in the

following result:

Corollary 3. The first four noncentral moments of x with (18) as pdf are given by

Eq̃ [x] = 0, Eq̃
[
x3
]

= 0,

Eq̃
[
x2
]

= 6λν21 + 8λν22 + 1, Eq̃
[
x4
]

= 72λν21 + 120λν22 + 3.
(19)

Proof. It is obtained straightforwardly given some results of Proposition 1 in Appendix 2. �

Let z denote again the standardised rv of x with (18) as pdf, then z = bx where b = 1/
√
Eq̃ [x2]. Hence,

the skewness of z is zero and the kurtosis of z is given by

kz =
3
(
24λν21 + 40λν22 + 1

)
(6λν21 + 8λν22 + 1)

2 . (20)
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It can be shown that the maximum and minimum levels of ekz are about 1.69 and −1.47, respectively.

Note that ekz = 1.69 is much lower than the maximum value of ekz = 2.72 under the TGC distribution with

pdf in (5).

Second, if one only aims to capture higher excess kurtosis levels under these kind of positive

transformations, then an easy approach can be the following restricted SNP density:

qn (x, νn) = λφ (x)
[
1 + ν2nH

2
n(x)

]
, (21)

where νn ∈ R and 1/λ = 1 + ν2n. Note that (21) can be obtained by eliminating all squared hermite

polynomials H2
k(x) such that 0 < k < n and all products Hi(x)Hj(x) with i 6= j from the SNP pdf in (6).

Note that all odd moments related to (21) are equal to zero.

Corollary 4. Let z be the standardised rv of x with (21) as pdf, i.e. z = bx where b = 1/
√
Eqn [x2], then

the kurtosis of z is obtained as

kz (n) =
2
√

6λν2n
(
A4nn +

√
3A2nn

)
+ 3(√

2λν2nA2nn + 1
)2 , (22)

where Ajnn ≡ Eφ
[
Hj (x)H2

n (x)
]
.

Proof. It is obtained straightforwardly given some results of Proposition 1 in Appendix 2. �

It can be shown that the excess kurtosis obtained from (22) does increase with n such that ekz ranges

from 0 (n = 1) to about 6.1 (n = 10).

4 Model for returns

We assume the asset return process rt is defined as rt = µt + εt with εt = σtzt, where µt and σ
2
t denote the

conditional mean and variance of rt given by µt = E [rt |It−1 ] and σ2t = E
[
(rt − µt)

2 |It−1
]
such that It−1

is the information set available at t− 1 and zt are the innovations with zero mean, unit variance and Dt as

the distribution with TV parameter set, i.e. zt ∼ Dt (0, 1). Note that Dt nests the simple case of constant

parameters across time of the distribution of zt, i.e. zt ∼ iid D (0, 1). Respecting the conditional variance,

we assume the popular TGARCH structure of Zakoïan (1994) which models directly the volatility σt instead

of σ2t and provides for the leverage effect. In short, we model the return series {rt} as

rt = µt + εt, εt = σtzt, zt ∼ Dt (0, 1) , (23)

σt = α0 + βσt−1 + α+1 ε
+
t−1 − α−1 ε−t−1, (24)

such that α0 > 0, β ≥ 0, α+1 ≥ 0 and α−1 ≥ 0. We use the notation: ε+t = max (εt, 0), ε−t = min (εt, 0).

11



Proposition 4. Let zt ∼ iid D (0, 1) in (23), then the unconditional variance of εt with conditional one

driven by the process (24) is

σ2ε ≡ E
(
σ2t
)

=
α20 (1 +$1)

(1−$1) (1−$2)
, (25)

where $k = E
(
ckt
)
with ct = β + α+1 z

+
t − α−1 z−t and σ2ε < +∞ for $k < 1, k = 1, 2. The expressions for

$k are given by

$1 = β −
(
α−1 + α+1

)
E
(
z−t
)
, (26)

and

$2 = β2 +
(
α+1
)2

+
[(
α−1
)2 − (α+1 )2]E [(z−t )2]− 2β

(
α−1 + α+1

)
E
(
z−t
)
. (27)

Proof. See Appendix 2. �

The second-order stationarity condition of (24) is $2 < 1. The following results show the formulas of

(26) and (27) under two particular distributions D (0, 1) for zt in Proposition 4. Specifically, the first case

related to the standard Normal distribution was already obtained in Francq and Zakoïan (2010), and the

second under the TGC distribution.

Corollary 5. Let zt ∼ iid N (0, 1) in (23), then the expressions for $k in Proposition 4 are obtained as

$1 = β +
1√
2π

(
α−1 + α+1

)
, (28)

and

$2 = β2 +
1

2

[(
α−1
)2

+
(
α+1
)2]

+

√
2

π
β
(
α−1 + α+1

)
. (29)

Proof. See Appendix 2. �

Corollary 6. Let zt ∼ iid D (0, 1) in (23) where D (0, 1) represents the standardized TGC distribution:

zt = a + bxt such that xt ∼ TGC(θ) with pdf in (5). Hence, the expressions of E
[(
z−t
)k]

for k = 1, 2 in

Proposition 4 are

E
(
z−t
)

= aQ (−a/b,θ) + bλΨ1 (−a/b,θ) , (30)

and

E
[(
z−t
)2]

=
(
a2 + b2

)
Q (−a/b,θ) + 2abλΨ1 (−a/b,θ) +

√
2b2λΨ2 (−a/b,θ) , (31)

such that Q (·) is the cdf of TGC in (7), Ψk (·) is defined as

Ψk (x,θ) = Γk00 (x) + 2γ1Γk30 (x) + 2γ2Γk40 (x) + 2γ1γ2Γk34 (x) + γ21Γk33 (x) + γ22Γk44 (x) , (32)

where Γkij (x) ≡ Eφ [Hk (u)Hi (u)Hj (u) I (u ≤ x)], γ1 = θ1/
√

3!, γ2 = θ2/
√

4! and 1/λ = 1 + γ21 + γ22.

Proof. See Appendix 2. �
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4.1 Conditional log-likelihood

The conditional density of rt can be expressed in terms of the conditional pdf of xt in (5) as

f (rt |It−1 ) =
1

btσt
q

(
zt − at
bt

|It−1
)
, (33)

where at = a (θt), bt = b (θt), θt = (θ1t, θ2t) is measurable with respect to the information set It−1 and

θit = θit (ϑi) such that ϑi is the parameter vector underlying the dynamics of θit as can be seen in section

6. The log-likelihood function corresponding to a particular observation rt, denoted as lt, is given as

lt = − lnσt (ϕ)− ln b (θt)−
1

2
ln (2π) + lnλ (θt)

−1

2

(
zt (ϕ)− a (θt)

b (θt)

)2
+ ln

[
ψ

(
zt (ϕ)− a (θt)

b (θt)

)]2
, (34)

where zt (ϕ) = (rt − µt (ϕ)) /σt (ϕ) and ϕ is the parameter vector to model both the conditional mean and

variance. We will consider in our empirical application in section 5 the following case: (i) µt = µ, σt in

(24), and hence ϕ =
(
µ, α0, β, α

+
1 , α

−
1

)
, and (ii) θt = θ. Finally, this particular case means that (33) can be

replaced by the expression: f (rt |It−1 ) = 1
bσt
q
(
zt−a
b

)
.

4.2 Conditional asymmetric risk measures

Let F (rt |It−1 ) denote the cdf of rt with the corresponding pdf in (33),

F (rt |It−1 ) =

∫ rt

−∞
f (u |It−1 ) du = Q

(
rt − κ0t
κ1t

|It−1
)
, (35)

where Q (· |It−1 ) is the conditional cdf of Q (·) in (7) and both κ0t = µt+atσt and κ1t = btσt are measurable

respecting It−1.

The conditional α-quantile (or VaR) of the stock return rt is given by rα,t ≡ F−1(α |It−1 ). Then,

rα,t = κ0t + κ1tQ
−1
t (α) , (36)

such that Q−1t (α) ≡ inf {x |Q(x |It−1 ) ≥ α} is the conditional α-quantile of xt with q (· |It−1 ) as pdf.

The conditional ES of rt is easily computed as

ESt (α) = Et−1 (rt |rt ≤ rα,t )

= κ0t + κ1tEt−1 (xt |xt ≤ xα,t ) , (37)

where Et−1 (xt |xt ≤ xα,t ) is the conditional version of (12) and xα,t = (rα,t − κ0t) /κ1t with rα,t as the VaR

in (36). Note that Et−1 (·) denotes the shortening of E (· |It−1 ).
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The conditional LPM of order 1 and r∗ as the threshold of rt is given by

LPMt (r∗, 1) =

∫ r∗

−∞
(r∗ − rt) f (rt |It−1 ) drt

= (r∗ − κ0t)Qt (τ t)− κ1tQt (τ t)Et−1 (xt |xt ≤ τ t ) , (38)

where Qt (·) denotes Q (· |It−1 ) and τ t = (r∗ − κ0t) /κ1t. Finally, the conditional LPM of order 2 is

LPMt (r∗, 2) =

∫ r∗

−∞
(r∗ − rt)2 f (rt |It−1 ) drt

= (τ t − κ0t)2Qt (τ t)− 2 (τ t − κ0t)κ1tQt (τ t)Et−1 (xt |xt ≤ τ t )

+Et−1
[
x2tI (xt ≤ τ t)

]
, (39)

such that Et−1
[
x2tI (xt ≤ τ t)

]
=
∫ τt
−∞ x2t q (xt |It−1 ) dxt is obtained in (17).

5 Empirical application

5.1 Dataset and modeling

The data used are daily percentage log returns computed as rt = 100 ln (Pt/Pt−1) from samples of daily

closing prices {Pt}Tt=1 for Eurostoxx50 and Nikkei indexes, Japanese Yen to U.S. dollar (JAP-US) and U.S.
dollar to pound sterling exchange rates (US-UK) and West Texas Intermediate Crude Oil, all obtained from

the New York Stock Exchange, sampled from January 14, 1999 to January 14, 2019 for a total of T = 5, 218

observations. We also consider Bitcoin prices sampled from from July 18, 2010 to July 31, 2018 (T = 2, 936).

All data series were obtained from Datastream, apart from Bitcoin series downloaded from coindesk.com.

Table 1 exhibits summary statistics of all data returns. Clearly, all the series show high leptokurtosis with

the Bitcoin presenting the largest kurtosis (14.96) and the Oil the smallest (7.23). The skewness is negative

in all series, with the largest (in absolute value) corresponding to US-UK (−0.58) and the smallest to the

Eurostoxx (−0.08). In all cases, the Jarque-Bera (J-B) test rejects the null of normality, motivating the use

of alternative distributions to the Gaussian for modeling returns.

Initially, we adopt some density functions with constant parameters across time for the conditional

standardized returns in (23), i.e. zt ∼ iid D (0, 1). We consider the following cases: (i) the standard Normal

distribution, i.e. D (0, 1) = N(0, 1); (ii) the GC-skewed (GCS hereafter) distribution that is nested in the GC

pdf in (1) with skewness parameter s and ek as the fixed excess kurtosis parameter, i.e. D (0, 1) = GC(s, ek);

(iii) the GC symmetric density, proposed by Zoia et al. (2018), which gathers positive excess kurtosis (GCK

hereafter), i.e. D (0, 1) = GC(0, ek); and (iv) D (0, 1) is the standardized TGC distribution denoted as

TGC(0, 1,θ), i.e. zt = a+ bxt such that xt ∼ TGC(θ) with pdf in (4). The conditional mean and volatility

of rt in (23) are given by µt = µ and σt in (24).

For the backtesting procedures below, we take the first T −N observations for the first in-sample window

and an out-of-sample (OOS) period of length N = 1, 000 using a daily rolling constant-sized window. Indeed,

we adopt a two-stage estimation method to each window as can be seen, among others, in Zhu and Galbraith

(2011). The mean and TGARCH parameters are estimated by (quasi)-maximum likelihood (QML), then
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the TGC, GCS and GCK density parameters are obtained by ML using the standardized residuals, zt, from

the first stage. According to the first in-sample TGARCH parameter estimates in Table 2, the returns for

all assets exhibit volatility clustering and asymmetric response to good and bad news. We find that for the

Bitcoin return series the estimates differ significantly from those of the other series reflecting rather different

volatility patterns. All series verify the second-order stationarity condition, i.e. the estimate of $2 in (29) is

lower than one. The following results can be extracted from Table 3. First, the TGC model yields slightly

higher log-likelihood (LL) values than the GCS except for US-UK, and both models are higher than that of

the GCK for all series except for Bitcoin. Second, both TGC and GCK models yield similar levels of excess

kurtosis. Note that the excess kurtosis of GCS is fixed to the GCK’s estimated value. Third, both TGC and

GCS produce significant and similar levels of skewness for all series, except for the Bitcoin where the former

yields a small positive skewness whilst the latter provides a non-significant negative one.2 Overall, the gap

in LL values can be mainly due to differences in the estimated levels of the higher-order moments produced

by the models.

5.2 Backtesting the density

5.2.1 P-value discrepancy plots

First, we test the density forecasting performance of the models following the methodology in Diebold,

Gunther and Tay (1998). The application of this methodology is based on the cdf evaluated at the one-

step-ahead realized returns through the OOS period. The resulting so-called probability integral transforms

(PIT) sequences verify that {ut}Nt=1 ∼ iid U(0, 1) under the correct one-step ahead cdf specification with

ut = D (rt |It−1 ) where D (· |It−1 ) denotes a conditional cdf. We use the p-value plot methods in Davidson

and MacKinnon (1998) applied to compare models forecasting performance. Thus, if the model is correctly

specified the difference between the cdf of ut and the 45 degree line should tend to zero. The empirical

distribution function of ut can be easily computed as

P̂pt(y%) =
1

N

N∑
t=1

I(ut ≤ y%), (40)

where I(ut ≤ y%) is an indicator function and y% is an arbitrary grid of % points.3 Alternatively, the p-

value discrepancy plot (i.e. plotting P̂pt(y%) − y% against y%) can be more revealing when it is necessary to
discriminate among specifications that perform similarly in terms of the p-value plot. Consequently, under

correct density specification, the variable P̂pt(y%)− y% must be close to zero.
Figure 6 presents the p-value discrepancy plots for all models and series. A first observation that emerges

from the plots is that the three GC models (TGC, GCS and GCK) perform overall better than the Normal.

We find that PITs from both TGC and GCS tend to cluster and depart from the GCK in most cases. Note

that for the Bitcoin there are no visually noticeable differences between the GC models and they exhibit a

great difference respecting the Normal.

2We have also estimated the GC with pdf in (1) and found similar parameter estimates as the ones in Table 3 for the TGC.
3We use the following % = 215 points grid: y% ∈ {0.001, 0.002, ..., 0.01, 0.015, ..., 0.99, 0.991, ..., 0.999}, since it highlights the

goodness-of-fit in the distribution tails.
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Table 1: Summary statistics for daily percent log returns

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

Mean 0.0084 0.0022 -0.0014 -0.0048 0.0271 0.3887

Median 0.0166 0.0162 0.0047 0.0000 0.0000 0.2032

Max 11.6442 11.9653 3.7102 4.4744 16.4137 42.4580

Min -11.1856 -11.1024 -6.5818 -8.3120 -17.0918 -49.1440

Std. dev. 1.4571 1.5600 0.6837 0.5823 2.3749 5.7352

Skewness -0.2348 -0.0848 -0.4726 -0.5835 -0.1703 -0.3196

Kurtosis 7.4453 8.3963 8.1029 14.4818 7.2350 14.9675

J-B stat 4362.7 7563.7 5838.7 28952.9 3923.8 17564.6

Observations 5217 5217 5217 5217 5217 2935

This table presents the summary statistics for daily percent log returns. The Jarque-Bera (J-B) statistic is
asymptotically distributed as a Chi-square with two degrees of freedom, χ22. The critical value of χ

2
2 for the 5%

significance level is 5.99. The sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from
January 15, 1999 to January 14, 2019; and for Bitcoin returns is from July 19, 2010 to July 31, 2018.

Table 2: QML estimation results

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

µ
-0.0097

(0.019)

0.0064

(0.018)

0.0063

(0.009)

-0.0024

(0.007)

0.0257

(0.030)

0.3182
∗

(0.133)

α0
0.0404

∗

(0.0089)

0.0284
∗

(0.0056)

0.0095
∗

(0.0036)

0.0044
∗

(0.0014)

0.0159
∗

(0.0068)

0.4560
∗

(0.1939)

β
0.9052

∗

(0.0119)

0.9244
∗

(0.0092)

0.9437
∗

(0.0100)

0.9575
∗

(0.0064)

0.9553
∗

(0.0100)

0.7024
∗

(0.0712)

α+1
0.0409

∗

(0.0097)

0.0143
∗

(0.0072)

0.0439
∗

(0.0079)

0.0323
∗

(0.0066)

0.0296
∗

(0.0095)

0.3332
∗

(0.0708)

α−1
0.1329

∗

(0.0165)

0.1290
∗

(0.0147)

0.0660
∗

(0.0128)

0.0561
∗

(0.0077)

0.0714
∗

(0.0145)

0.3382
∗

(0.0861)

$2 0.9546 0.9686 0.9765 0.9864 0.9926 0.9823

LL -1.7406 -1.7240 -0.9369 -0.7542 -2.1753 -2.9970

Model parameter specifications: rt = µ+ εt, εt = σtzt, zt ∼ iid N (0, 1) , σt = α0 + βσt−1 + α+1 ε
+
t−1 − α−1 ε

−
t−1.

This table presents QML estimates of parameters of the TGARCH model for percent log return series: Nikkei,
Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin. The in-sample period for Nikkei, Eurostoxx50, JAP-US, US-UK
and Oil returns comprises 4,217 observations from January 15, 1999 to March 16, 2015; and for Bitcoin returns
comprises 1,935 observations from July 19, 2010 to November 3, 2015. Heteroscedasticity-consistent standard errors
are provided in parentheses below the parameter estimates. (∗) and (∗∗) indicate significance at 1% and 5% levels,
respectively. The second-order stationarity condition of TGARCH under normality must verify $2 < 1 with $2

given in (29). Finally, LL is the log-likelihood value (constant terms included) of the model.
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Table 3: TGC, GCS and GCK models estimation results

TGC GCS GCK TGC GCS GCK

Nikkei Eurostoxx50

θ1
-0.0553

∗

(0.018)

-0.1239
∗

(0.046)

-0.0589
∗

(0.018)

-0.1481
∗

(0.044)

θ2
0.2387

∗

(0.036)

0.5628
∗

(0.093)

0.2544
∗

(0.036)

0.5918
∗

(0.094)

s -0.1446 -0.1559

ek 0.6326 0.6819

LL -1.4105 -1.4115 -1.4124 -1.4109 -1.4114 -1.4127

JAP-US US-UK

θ1
-0.0349

∗

(0.018)

-0.0942
∗∗

(0.048)

-0.0335

(0.018)

-0.0954
∗

(0.045)

θ2
0.4319

∗

(0.032)

1.0960
∗

(0.098)

0.2295
∗

(0.037)

0.5266
∗

(0.095)

s -0.1033 -0.0871

ek 1.2439 0.5980

LL -1.3954 -1.3977 -1.3982 -1.4124 -1.4123 -1.4128

Oil Bitcoin

θ1
-0.0767

∗

(0.018)

-0.2025
∗

(0.048)

0.0021

(0.022)

-0.045

(0.580)

θ2
0.3741

∗

(0.032)

0.9165
∗

(0.095)

0.9186
∗

(0.071)

2.6972
∗

(0.119)

s -0.2192 0.0062

ek 1.0645 2.4726

LL -1.3963 -1.3995 -1.4015 -1.3039 -1.3027 -1.3028

This table presents ML estimates of parameters of the TGC, GCS and GCK models for percent log return series:
Nikkei, Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin. The in-sample period for Nikkei, Eurostoxx50, JAP-US, US-
UK and Oil returns comprises 4,217 observations from January 15, 1999 to March 16, 2015; and for Bitcoin returns
comprises 1,935 observations from July 19, 2010 to November 3, 2015. Heteroscedasticity-consistent standard errors
are provided in parentheses below the parameter estimates. (∗) and (∗∗) indicate significance at 1% and 5% levels,
respectively. LL gives log likelihood values (constant terms included); and s and ek denotes in-sample skewness and
excess kurtosis estimates from equations (9) and (10), respectively.
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Figure 6: P-value discrepancy plots for PIT series obtained from TGC, GCS, GCK and Normal pdfs. Return series:

Nikkei, Eurostoxx50, JAP-US, UK-US, Oil and Bitcoin. The out-of-sample period for Nikkei, Eurostoxx50, JAP-US,

US-UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin returns is from November

4, 2015 to July 31, 2018. Predictions 1000.
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5.2.2 Proper scoring rules

Second, to evaluate the relative density forecasting performance of the models we use strictly proper scoring

rules described in Amisano and Giacomini (2007). A scoring rule is a loss function Υ(f̃t, rt) whose arguments

are the density forecast f̃t = ft−1(rt) and the future realization of the return, rt. In this paper, we use the

weighted logarithmic scoring rule:

Υj(f̃t, zt) = ωj(zt) ln f̃t, (41)

This is a (strictly proper) scoring rule that rewards accurate density forecasts by setting a high probability to

the event that actually occurred. The weight functions ω1(zt) = φ(zt), ω2(zt) = Φ(zt) and ω3(zt) = 1−Φ(zt)

emphasize, respectively, the center, the right tail and the left tail. The density forecast models can be ranked

by comparing their average scores:

Υj(f̃t, zt) = N−1
N∑
t=1

Υjt(f̃t, zt). (42)

So, we prefer model f if Υj(f̃t, zt) > Υj(g̃t, zt), and prefer model g otherwise. The null hypothesis

H0 : E
[
Υj(f̃t, zt)−Υj(g̃t, zt)

]
= 0 is tested in Amisano and Giacomini (2007).

Table 4: Density Forecasting

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

TGC

left

center

right

-0.5768

-0.2562

-0.5773

-0.6871

-0.3265

-0.6354

-0.6957

-0.3082

-0.6424

-0.7686

-0.3191

-0.6915

-0.6957

-0.3082

-0.6424

-0.5768

-0.2562

-0.5773

GCK

left

center

right

-0.6394

-0.2953

-0.6456

-0.6919

-0.3312

-0.6484

-0.7124

-0.3185

-0.6616

-0.7762

-0.3223

-0.6982

-0.7124

-0.3185

-0.6616

-0.6393

-0.2953

-0.6456

GCS

left

center

right

-0.6431

-0.2943

-0.6437

-0.6970

-0.3317

-0.6442

-0.7143

-0.3192

-0.6595

-0.7785

-0.3233

-0.6977

-0.7143

-0.3192

-0.6595

-0.6431

-0.2943

-0.6437

N

left

center

right

-0.6785

-0.3371

-0.6789

-0.7011

-0.3396

-0.6589

-0.7308

-0.3337

-0.6753

-0.7890

-0.3295

-0.7069

-0.7308

-0.3337

-0.6753

-0.6785

-0.3371

-0.6789

This table presents the results of average logarithmic scores in (42) for one-step-ahead density forecast from TGC,
GCS, GCK and Normal (N) models. Return series: Nikkei, Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin. The out-
of-sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17, 2015 to January
14, 2019; and for Bitcoin returns is from November 4, 2015 to July 31, 2018. Predictions 1000.
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Table 4 presents the results of the weighted average scores. A first observation that stands out is that

all TGC’s weighted scores are higher than those of the rest of the models for all series. The Normal model

provides systematically the lowest scores. Both GCK and GCS lead to similar performance and in-between

the TGC and the Normal. We carried out Amisano and Giacomini (2007) tests, which show that differences

in models’scores are significant for almost all cases.4

5.3 Backtesting VaR and ES

We evaluate the forecasting performance for the left tail of the return conditional distribution under

alternative density specifications for zt. Given a nominal coverage rate α, the one-day TGC-TGARCH

VaR is

V aRt (α) = κ0,t + κ1,tQ
−1 (α) , (43)

where κ0,t = µ + aσt and κ1,t = bσt. Let ht(α) = I (rt < V aRt (α)) denote the violation or hit variable.

The quadratic loss function, which incorporates the exception magnitude, provides useful information to

discriminate among similar models according to the unconditional coverage test and is given by

QLt (α) = (rt − yt)2 × ht(α), (44)

where yt ∈ {V aRt (α) , ESt (α)}, see Lopez (1999) and Angelidis and Degiannakis (2007). The sample

average of (44) for the OOS period of N days is

AQL (α) = N−1
N∑
t=1

QLt (α) . (45)

5.3.1 Backtesting VaR

We are interested in checking whether the centered violations {ht(α)− α}∞t=1 follow a martingale difference
sequence (MDS), which implies zero mean property and no correlation. Testing MDS leads to both the

unconditional backtest (or unconditional coverage test) and conditional backtest (or independence test).

The null hypothesis for the unconditional backtest, H0,U : E [ht(α)] = α, corresponds to the following test

statistics, proposed by Kupiec (1995), which converges asymptotically to a standard normal distribution, i.e.

UV aR (α) =

√
N
(
h(α)− α

)√
α (1− α)

a∼ N (0, 1) , (46)

where h(α) is the sample average of
{
ĥt (α)

}N
t=1

such that ĥt (α) = I (ût ≤ α) with ût as the estimation

of ut = F (rt |It−1 ) in (35). For testing the null hypothesis for the conditional backtest, H0,C :

E [ht(α)− α |It−1 ] = 0, we implement the approach by Escanciano and Olmo (2010) based on the Box-

Pierce test statistic:

CV aR(m) = N

m∑
i=1

ρ̂2j
a∼ χ2

m
, (47)

which is asymptotically a chi-square distribution with m degrees of freedom such that ρ̂j is the j-th lag of

the sample autocorrelation defined as ρ̂j =
γ̂j
γ̂0
where

γ̂j =
1

N − j

N∑
t=1+j

(
ĥt (α)− α

)(
ĥt−j (α)− α

)
. (48)

4These test results are not included to save space but are available from the authors upon request.
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5.3.2 Backtesting ES

The unconditional and conditional backtests are the analogues for ES of the above unconditional and

conditional VaR backtests. Du and Escanciano (2017) provide the ES backtest based on the notion of

cumulative violations (CV), which accumulates the violations across the tail distribution and can be rewritten

as

Ht (α) =

∫ α

0

ht (u) du

=
1

α
(α− ut) I (ut ≤ α) . (49)

Note that (49) measures the distance of the returns from the corresponding α-quantile in (43) during the

violations. It is shown that
{
Ht(α)− α

2

}∞
t=1

follows the MDS property. Thus, the null hypothesis for the

unconditional backtest is H0,U : E [Ht(α)] = α
2 and the related test statistics is given by

UES =

√
N
(
H(α)− α

2

)√
α
(
1
3 −

α
4

) a∼ N (0, 1) , (50)

whereH(α) is the mean of
{
Ĥt (α)

}N
t=1

such that Ĥt (α) = 1
α (α− ût) I (ût ≤ α). The null for the conditional

backtest hypothesis is H0,C : E [Ht(α) |It−1 ] = α
2 with corresponding test statistics the Box-Pierce one given

by

CES(m) = N

m∑
i=1

ρ̂2j
a∼ χ2

m
, (51)

such that ρ̂j =
γ̂j
γ̂0
is the j-th lag of the sample autocorrelation with

γ̂j =
1

N − j

N∑
t=1+j

(
Ĥt (α)− α

2

)(
Ĥt−j (α)− α

2

)
. (52)

5.3.3 Backtesting results

Following Kerkhof and Melenberg (2004) and others, a larger coverage level α for ES than VaR is selected to

compare both risk measures. The coverage level for ES is twice (or close to twice) than that of VaR, indeed.

Table 5 shows the results of the descriptive analysis of violations. Firstly, we find that for the low coverage

levels suggested by the Basel Committee (VaR(0.01), ES(0.025)) all three GC models perform much better

than the Normal with the TGC and the GCS providing the best performance for all series. For 5% VaR and

10% ES differences are smaller between GC and Normal models and the latter performs better for Bitcoin.

These results are reinforced by the magnitude of exceptions for VaR and ES measured through the AQL (α)

statistic presented in Table 6. We find that either TGC or GCS yield AQL lower values for 1% and 2.5%

coverages, and for 5% (but not 10%) level the Normal distribution performs better than the GCK. Table 7

shows the results of the p-values of VaR and ES backtesting. The null is accepted for most return series at

the low coverage levels pointing out we cannot find empirical evidence mainly against all three GC densities.
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Table 5: Descriptive analysis of violations

VaR(1%) ES(2.5%) VaR(5%) ES(10%) VaR(1%) ES(2.5%) VaR(5%) ES(10%)

Nikkei Eurostoxx50

TGC 14 15.38 44 43.21 7 8.36 40 37.89

GCS 14 15.34 43 42.78 7 8.48 40 37.17

GCK 18 17.40 46 45.75 7 9.68 41 40.17

N 18 19.40 46 45.26 12 11.49 41 38.90

JAP-US US-UK

TGC 12 13.45 53 50.55 10 14.70 54 54.14

GCS 12 13.76 51 49.43 10 14.69 50 52.93

GCK 12 14.82 54 51.34 11 15.85 56 55.62

N 19 20.60 52 49.48 18 19.56 54 53.81

Oil Bitcoin

TGC 13 12.01 53 52.45 6 7.60 51 45.43

GCS 13 11.91 51 51.41 6 6.82 51 46.92

GCK 13 14.05 56 55.33 6 7.22 54 48.19

N 16 18.36 54 53.45 16 18.09 47 44.48

This table shows the violations for VaR and the cumulative violations given in (49) for ES under each pdf. Return
series: Nikkei, JAP-US, Oil, US-UK, Eurostoxx50, Bitcoin. The out-of-sample period for Nikkei, Eurostoxx50, JAP-
US, US-UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin returns is from November
4, 2015 to July 31, 2018. Predictions 1000.

Table 6: Average quadratic loss of VaR and ES

VaR(1%) ES(2.5%) VaR(5%) ES(10%) VaR(1%) ES(2.5%) VaR(5%) ES(10%)

Nikkei Eurostoxx50

TGC 0.0186 0.0182 0.0725 0.0581 0.0554 0.0549 0.0925 0.0831

GCS 0.0185 0.0183 0.0713 0.0577 0.0553 0.0551 0.0917 0.0829

GCK 0.0229 0.0223 0.0772 0.0634 0.0585 0.0581 0.0951 0.0860

N 0.0279 0.0274 0.0761 0.0653 0.0625 0.0621 0.0943 0.0873

JAP-US US-UK

TGC 0.0055 0.0055 0.0214 0.0166 0.0430 0.0427 0.0601 0.0558

GCS 0.0058 0.0058 0.0208 0.0165 0.0429 0.0427 0.0596 0.0556

GCK 0.0062 0.0062 0.0218 0.0173 0.0436 0.0434 0.0605 0.0564

N 0.0089 0.0087 0.0210 0.0183 0.0457 0.0455 0.0601 0.0570

Oil Bitcoin

GCT 0.0134 0.0133 0.1288 0.0881 0.1251 0.1319 0.7595 0.5224

GCS 0.0135 0.0137 0.1235 0.0868 0.1181 0.1220 0.7988 0.5194

GCK 0.0189 0.0187 0.1405 0.0998 0.1261 0.1311 0.8663 0.5503

N 0.0326 0.0318 0.1345 0.1075 0.2872 0.2832 0.7235 0.6144

This table exhibits the results of the AQL function given in (45) for VaR and ES from alternative pdfs. Return series:
Nikkei, JAP-US, Oil, US-UK, Eurostoxx50, Bitcoin. The out-of-sample period for Nikkei, Eurostoxx50, JAP-US, US-
UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin returns is from November 4,
2015 to July 31, 2018. Predictions 1000.
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Table 7: P-values for backtesting VaR and ES

VaR(1%) ES(2.5%) VaR(5%) ES(10%) VaR(1%) ES(2.5%) VaR(5%) ES(10%)

Nikkei Eurostoxx50

TGC U 0.824 0.204 0.212 0.685 0.035 0.340 0.036 0.043

C 0.920 0.973 0.533 0.770 0.168 0.999 0.210 0.585

GCS U 0.809 0.204 0.175 0.685 0.025 0.340 0.023 0.043

C 0.922 0.973 0.540 0.770 0.193 0.999 0.180 0.585

GCK U 0.583 0.026 0.469 1.000 0.119 0.340 0.023 0.043

C 0.935 0.716 0.558 0.782 0.193 0.999 0.180 0.585

N U 0.319 0.011 0.393 0.685 0.217 0.525 0.046 0.156

C 0.949 0.759 0.549 0.773 0.078 0.322 0.158 0.753

JAP-US US-UK

TGC U 0.837 0.525 0.921 0.685 0.506 1.000 0.456 0.685

C 0.708 0.983 0.200 0.672 0.493 0.122 0.766 0.443

GCS U 0.997 0.525 0.918 0.685 0.594 1.000 0.598 0.685

C 0.776 0.525 0.918 0.672 0.486 0.122 0.760 0.443

GCK U 0.653 0.525 0.770 0.685 0.310 0.751 0.312 0.311

C 0.670 0.983 0.199 0.672 0.524 0.217 0.777 0.436

N U 0.180 0.004 0.925 0.311 0.127 0.011 0.492 0.105

C 0.717 0.952 0.210 0.866 0.560 0.529 0.786 0.447

Oil Bitcoin

TGC U 0.937 0.340 0.680 0.418 0.178 0.204 0.410 0.068

C 0.435 0.423 0.006 0.723 0.854 1.000 0.137 0.665

GCS U 0.738 0.340 0.820 0.418 0.324 0.204 0.745 0.026

C 0.473 0.423 0.007 0.723 0.760 1.000 0.138 0.474

GCK U 0.475 0.340 0.334 0.839 0.359 0.204 0.698 0.043

C 0.345 0.423 0.006 0.821 0.751 1.000 0.126 0.585

N U 0.157 0.057 0.552 0.311 0.348 0.057 0.320 0.311

C 0.375 0.662 0.007 0.647 0.732 0.664 0.087 0.436

This table reports the p-values for (i) the VaR backtesting tests in (46) and (47), and (ii) the ES backtesting tests
in (50) and (51). The unconditional and conditional backtests are denoted, respectively, as U and C. Return series:
Nikkei, JAP-US, Oil, US-UK, Eurostoxx50, Bitcoin. The out-of-sample period for Nikkei, Eurostoxx50, JAP-US,
US-UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin returns is from November
4, 2015 to July 31, 2018. Predictions 1000.
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6 Time-varying conditional higher-order moments

The conditional skewness and kurtosis of rt are defined, respectively, as sr,t = E
(
ε3t |It−1

)
/σ3t and kr,t =

E
(
ε4t |It−1

)
/σ4t . If we let the pdf of xt in (5) exhibit TV parameters and µt = µ in (23), then sr,t = sz,t

and kr,t = kz,t are now TV conditional higher-order moments where sz,t and kz,t are obtained by plugging

θi,t into equations (9) and (10). The dynamics equation for θi,t is given by

θi,t = ϕ0i + ϕ1iθi,t−1 + ϕ+2iz
+
t−1 + ϕ−2iz

−
t−1. (53)

This specification was initially proposed by JR (2003) under the conditional generalized Student’s t

distribution of Hansen (1994) for the innovations. It has later been implemented, among others, by Feunou,

Jahan-Parvar and Tédongap (2016) who consider alternative conditional densities and introduce the skewed

generalized error (SGE) distribution; Anatolyev and Petukhov (2016) use the SGE density of Feunou et al.

(2016) assuming time variation only for the parameter more related to skewness; Lalancette and Simonato

(2017) use the conditional Johnson Su distribution, and León and Ñíguez (2018) exploit the conditional SNP

distribution in LMS (2009).

Table 8 exhibits the ML parameter estimates for θi,t in (53). Several features can be observed. First,

there is evidence that the TV-TGC model does capture skewness and kurtosis clustering under the JR

asymmetric model since ϕ1i and ϕ2i are significant in most returns series for both θ1,t and θ2,t. Second, we

can find some evidence of asymmetric response to positive and negative shocks only for one TV parameter

as exhibited in Nikkei and Bitcoin for θ2,t and θ1,t, respectively. Third, it is also shown that only ϕ
+
2i is

significant in most returns series.

7 Conclusions

In this article we develop a new pdf based on the GC expansion in JR (2001). Our approach consists of a

transformation of the GC pdf through the method of Gallant and Nychka (1987) which ensures the pdf’s

positivity within the whole parametric space. We provide an analysis of the TGC’s statistical properties

including conditions for unimodality, closed-form expressions of cdf, moments, quantiles, ES and lower partial

moments. As an extension, we present a TGC specification with time-varying skewness and kurtosis which

gathers clustering and asymmetric response to positive and negative shocks.

The relative performance of our model is tested through an OOS application to forecast the density, VaR

and ES of stock indexes, exchange rate, oil and cryptocurrency returns. To do so, and in order to isolate

the effect of skewness, we consider the symmetric-GC of Zoia et al. (2018) and its asymmetric extension,

which we name GCS and GCK, respectively. We use the Normal distribution as a benchmark for our

comparative analysis. Density forecasting is evaluated through p-value discrepancy plots and proper scoring

rules in Amisano and Giacomini (2007). VaR and ES forecast accuracy is evaluated through the backtesting

methods of Escanciano and Olmo (2010) and Du and Escanciano (2017), respectively.

Our backtesting analysis to forecast the entire distribution shows that GC models (TGC, GCS, GCK)

provide a closer fit than the Normal for all returns series. Both TGC and GCS perform similarly and the

GCK’s fit is between the former and the Normal. In particular, for the distribution center the TGC and

GCS fit is very similar and visually different to that of both the GCK and the Normal.

Regarding the backtesting for the tail distribution, the TGC clearly overperforms the GCK and Normal

models for lower coverage levels, i.e. 1% for VaR and 2.5% for ES. In comparison to the GCS, the TGC’s

performance differ slightly and in a minority of cases the GCS’s is better.
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The GC is an example of a polynomial expansion (PE) density with the standard normal as the parent

distribution. Following the methodology of Bagnato et al. (2015), an interesting avenue for future research

would be obtaining the PE density according to the standardized Student-t distribution and analyze its

parametric properties.

Table 8: TV-TGC (JR asymmetric) model estimation results

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

ϕ01

-0.0944∗

(0.034)

-0.0204

(0.029)

-0.0302

(0.026)

-0.0620

(0.036)

-0.1550∗

(0.034)

0.0402∗

(0.010)

ϕ11

-0.4714
∗

(0.213)

0.2349

(0.268)

0.5032
∗

(0.154)

-0.5949∗

(0.165)

-0.8118∗

(0.124)

0.8594∗

(0.069)

ϕ+21

0.0608∗

(0.028)

-0.0091

(0.034)

0.0698∗∗

(0.032)

0.0324

(0.030)

0.0455∗∗

(0.022)

-0.0461∗

(0.016)

ϕ−21

0.0227

(0.022)

0.0346

(0.032)

0.0324

(0.027)

0.0160

(0.029)

-0.0126

(0.017)

0.0801∗

(0.024)

ϕ02

0.3059∗

(0.099)

-0.0128

(0.047)

0.1612

(0.109)

0.4633∗

(0.074)

0.0986

(0.077)

1.4579∗

(0.142)

ϕ12

-0.6026
∗

(0.233)

0.5882
∗

(0.181)

0.3422

(0.298)

-0.9678∗

(0.012)

0.5214∗

(0.196)

-0.4535∗

(0.135)

ϕ+22

0.1237∗∗

(0.061)

0.3043∗

(0.078)

0.1008

(0.061)

-0.0343

(0.019)

0.1899∗

(0.059)

-0.3328∗

(0.085)

ϕ−22

-0.1022
∗

(0.041)

-0.0546

(0.051)

-0.2021∗

(0.050)

0.0154

(0.019)

-0.0275

(0.042)

0.0134

(0.075)

LL -1.4085 -1.4079 -1.3922 -1.4116 -1.3937 -1.2950

min(sk) -0.6286 -0.5824 -0.5891 -0.4883 -0.6763 -1.1553

max(sk) 0.5112 -0.0620 0.9788 0.2702 0.3724 0.5144

mean(sk) -0.1363 -0.1353 -0.0967 -0.0915 -0.2047 0.0000

min(ku) 2.8469 3.0016 3.6495 2.9055 3.5720 2.6981

max(ku) 4.9967 5.7026 5.5925 4.5337 5.6900 5.7194

mean(ku) 3.6696 3.8375 4.1819 3.5959 4.0672 5.3741

The parameter dynamics implied in the TV-TGC distribution of zt: θi,t = ϕ0i+ϕ1iθi,t−1+ϕ
+
2iz

+
t−1+ϕ

−
2iz

−
t−1, i = 1, 2.

This table presents ML estimates of the TV-TGC coeffi cients ϕki in the previous parameter equations of θi,t for
percent log return series: Nikkei, Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin. The "JR asymmetric" model for
θi,t is borrowed from JR (2003). The in-sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns
comprises 4,217 observations from January 15, 1999 to March 16, 2015; and for Bitcoin returns comprises 1,935
observations from July 19, 2010 to November 3, 2015. Heteroscedasticity-consistent standard errors are provided in
parentheses below the parameter estimates. (∗) and (∗∗) indicate significance at 1% and 5% levels, respectively. sk
and ku denote in-sample skewness and kurtosis. min(x), max(x) and mean(x) denote minimum, maximum and mean
values of series x. LL gives log likelihood values (constant terms included) of the returns model: TGARCH model
with constant mean and the above TV-TGC distribution for the standardized returns.
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Appendix 1 (Hermite polynomials)

The normalized Hermite polynomials, Hk (x), can be expressed recursively for k ≥ 2 as

Hk(x) =
xHk−1(x)−

√
k − 1Hk−2(x)√
k

, (54)

with initial conditions H0 (x) = 1 and H1 (x) = x. The set {Hk (x)}k∈N constitutes an orthonormal basis

with regard to a weighting function φ(x), which is the pdf of the standard normal distribution. The

orthonormality property means that Eφ[Hk(x)Hl(x)] = δkl,where δkl is the Kronecker delta (δkl = 1 if

k = l while δkl = 0 otherwise) and the operator Eφ[·] takes the expectation with φ(x) as pdf. It is verified

that even and odd degree Hermite polynomials lead to even and odd functions, respectively. We can also

express Hk (x) in terms of xk by considering the following result from Blinnikov and Moessner (1998):

Hk (x) =
√
k!

[k/2]∑
n=0

(−1)
n

n! (k − 2n)!2n
xk−2n, (55)

where [·] rounds its argument to the nearest integer toward zero. Given (55), we can now write xk in terms

of Hk (x) as follows:

xk =
√
k!Hk (x)−

√
k!

[k/2]∑
n=1

(−1)
n

n! (k − 2n)!2n
xk−2n. (56)

If we substitute recursively the powers of x on the right side of equation (56) by the same equation, we finally

obtain xk as a polynomial transformation of a set of Hermite polynomials of degrees lower or equal than k.

Appendix 2 (Proofs)

Consider mk (x) ≡ Eφ [z |z ≤ x ], then a recursive formula for the truncated normal moments (see Liquet and

Nazarathy, 2015) is obtained for k ≥ 1 as mk (x) = (k − 1)mk−2 (x)− xk−1φ (x) /Φ (x), where m−1 (x) = 0

and m0 (x) = 1. Let Bk (x) =
∫ x
−∞ zkφ(z)dz, then Bk (x) = mk (x) Φ (x). We can obtain a recursive

expression for Bk (x) as

Bk (x) = (k − 1)Bk−2 (x)− xk−1φ (x) , k ≥ 2 (57)

where B0 (x) = Φ (x) and B1 (x) = −φ (x). The recursion formula in (57) is also obtained, in a very slightly

different way, in Skoulakis (2019) and it will be useful for all our proofs.

Proof of Proposition 1 (cdf). Consider ξijk ≡ 1/
√
i!j!k!, the equation in (55) and Bk (x) in (57), then

the expressions Γij (·) in (7) are easily computed as

Γ30 (x) = ξ300 [B3 (x)− 3B1 (x)] ,

Γ40 (x) = ξ400 [B4 (x)− 6B2 (x) + 3B0 (x)] ,

Γ33 (x) = ξ330 [B6 (x)− 6B4 (x) + 9B2 (x)] ,

Γ34 (x) = ξ340[B7 (x)− 9B5 (x) + 21B3 (x)− 9B1 (x)],

Γ44 (x) = ξ440 [B8 (x)− 12B6 (x) + 42B4 (x)− 36B2 (x) + 9B0 (x)] .

(58)
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Proof of Proposition 2 (moments). According to (56), we can express the first four powers of x as a

function of the Hermite polynomials, i.e. x = H1 (x), x2 =
√

2H2 (x)+H0 (x), x3 =
√

3!H3 (x)+3H1 (x) and

x4 =
√

4!H4 (x) + 6
√

2H2 (x) + 3H0 (x). Then, we can easily obtain Eq
[
xk
]

=
∫ +∞
−∞ xkq (x) dx as follows:

Eq [x] = 2λγ1γ2A134,

Eq
[
x2
]

=
√

2λγ21A233 +
√

2λγ22A244 + 1,

Eq
[
x3
]

= 2
√

3!λγ1 + 2
√

3!λγ1γ2A334 + 6λγ1γ2A134,

Eq
[
x4
]

= 2
√

4!λγ2 +
√

4!λγ21A334 +
√

4!λγ22A444 + 6
√

2λγ21A233 + 6
√

2λγ22A244 + 3,

(59)

where Aijk ≡ Eφ [Hijk (x)] =
∫ +∞
−∞ Hijk (x)φ (x) dx with Hijk (x) ≡ Hi (x)Hj (x)Hk (x) verifying that

Aijk = 0 if i+ j + k is an odd number and

A233 = ξ233 [n8 − 7n6 + 15n4 − 9n2] ,

A134 = ξ134 [n8 − 9n6 + 21n4 − 9n2] ,

A244 = ξ244 [n10 − 13n8 + 54n6 − 78n4 + 45n2 − 9] ,

A334 = ξ334 [n10 − 12n8 + 48n6 − 72n4 + 27n2] ,

A444 = ξ444 [n12 − 18n10 + 117n8 − 324n6 + 351n4 − 162n2 + 27] ,

(60)

where ξijk ≡ 1/
√
i!j!k! and n2k ≡ Eφ

[
x2k
]

= (2k)!
2kk!

. Then, A233 = 3
√

2, A134 = 2, A244 = 4
√

2, A334 = 3
√

6,

A444 = 6
√

6 and finally, we obtain (8).

Proof of Proposition 3 (ES). Consider ξijk ≡ 1/
√
i!j!k!, the equation in (55) and Bk (x) in (57), then

the expressions of Γijk (·) in (12) are easily computed as

Γ100 (x) = B1 (x) ,

Γ130 (x) = ξ130 [B4 (x)− 3B2 (x)] ,

Γ140 (x) = ξ140 [B5 (x)− 6B3 (x) + 3B1 (x)] ,

Γ133 (x) = ξ133 [B7 (x)− 6B5 (x) + 9B3 (x)] ,

Γ134 (x) = ξ134 [B8 (x)− 9B6 (x) + 21B4 (x)− 9B2 (x)] ,

Γ144 (x) = ξ144 [B9 (x)− 12B7 (x) + 42B5 (x)− 36B3 (x) + 9B1 (x)] .

(61)

Proof of Corollary 2 (LPM). Consider ξijk ≡ 1/
√
i!j!k!, the expression in (55) and Bk (x) in (57), then

Γijk (·) in (17) are obtained as

Γ200 (x) = ξ200 [B2 (x)−B0 (x)] ,

Γ230 (x) = ξ230 [B5 (x)− 4B3 (x) + 3B1 (x)] ,

Γ240 (x) = ξ240 [B6 (x)− 7B4 (x) + 9B2 (x)− 3B0 (x)] ,

Γ233 (x) = ξ233 [B8 (x)− 7B6 (x) + 15B4 (x)− 9B2 (x)] ,

Γ234 (x) = ξ234 [B9 (x)− 10B7 (x) + 30B5 (x)− 30B3 (x) + 9B1 (x)] ,

Γ244 (x) = ξ244 [B10 (x)− 13B8 (x) + 54B6 (x)− 78B4 (x) + 45B2 (x)− 9B0 (x)] .

(62)
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Proof of Proposition 4 (general expression of σ2ε). Following He and Teräsvirta (1999), we can rewrite

(24) as σt = α0 + σt−1ct−1 where ct = β + α+1 z
+
t − α−1 z−t and so, σ2t = α20 + c2t−1σ

2
t−1 + 2α0ct−1σt−1. By

taking expectations in both sides of this equation, it is verified that E
(
c2t
)

= E
(
c2t−1

)
, E (ct−1σt−1) =

E (ct)E (σt). If we assume the stationarity condition that E
(
σkt
)

= E
(
σkt−1

)
with k = 1, 2, then we obtain

E (σt) = α0 [1− E (ct)]
−1 and E

(
σ2t
)

= α20 [1− E (ct)]
−1 [

1− E
(
c2t
)]−1

. Finally, to achieve the closed-form

formula of E
(
σ2t
)
in (25), we need to obtain E (ct) and E

(
c2t
)
. We take the following steps. First, it is

verified that E
(
zkt
)

= E
[(
z+t
)k]

+ E
[(
z−t
)k]

with k ∈ N, then E
(
z+t
)

= −E
(
z−t
)
since E (zt) = 0 and

E
[(
z+t
)2]

= 1−E
[(
z−t
)2]

since E
(
z2t
)

= 1. Second, it can be easily obtain E (ct) = β−
(
α−1 + α+1

)
E
(
z−t
)

and denoted as $1 in (26). Third, given some previous results, we can express E
(
c2t
)
in terms of E

[(
z−t
)k]

for k = 1, 2 and denoted as $2 in (27).

Proof of Corollary 5 (expression of σ2ε under N (0, 1)). Given the previous results in Proposition 4,

we can easily obtain σ2ε in (25) when zt ∼ iid N (0, 1). We only have to compute E
[(
z−t
)k]

for k = 1, 2 and

plug into the equations (26) and (27). First, it is verified that E
(
z−t
)

= B1 (0) = −φ (0) from Proposition 3,

then $1 = β+
(
α−1 + α+1

)
φ (0) and we obtain (28). Second, consider both x2 =

√
2H2 (x) + 1 and Corollary

2, then E
[(
z−t
)2]

=
√

2Γ200 (0) + B0 (0) = B2 (0) where B2 (0) = 1/2 by using (57) and we finally obtain

(29).

Proof of Corollary 6 (expression of σ2ε under standardized TGC). Similar to Corollary 5, we proceed

to compute E
[(
z−t
)k]

for k = 1, 2. Consider the general expression given by

E
[(
z−t
)k]

=
∫ −a/b
−∞ (a+ bxt)

k
q (xt,θ) dxt =

k∑
j=0

(
k

j

)
ak−jbjξ?j (−a/b,θ) , (63)

where k ∈ N, ξ?j (u,θ) =
∫ u
−∞ xjq (x,θ) dx and q (·) is the pdf of TGC in (5). First, we set k = 1 in (63),

then

E
(
z−t
)

=
∫ −a/b
−∞ (a+ bxt) q (xt,θ) dxt = aξ?0 (−a/b,θ) + bξ?1 (−a/b,θ) ,

such that ξ?0 (−a/b,θ) = Q (−a/b,θ) with Q (·) is the cdf of TGC in (7), ξ?1 (·) can be rewritten as
ξ?1 (u,θ) =

∫ u
−∞H1 (x) q (x,θ) dx = λΨ1 (u,θ) with Ψ1 (·) in (32) where Γ1ij (·) is obtained in Proposition 3.

Second, for k = 2 in (63), then

E
[(
z−t
)2]

=
∫ −a/b
−∞ (a+ bxt)

2
q (xt,θ) dxt = a2ξ?0 (−a/b,θ) + 2abξ?1 (−a/b,θ) + b2ξ?2 (−a/b,θ) ,

such that ξ?2 (·) can be rewritten as ξ?2 (u,θ) =
∫ u
−∞

(√
2H2 (x) + 1

)
q (x,θ) dx =

√
2
∫ u
−∞H2 (x) q (x,θ) dx+

Q (−a/b,θ). Finally,
∫ u
−∞H2 (x) q (x,θ) dx = λΨ2 (u,θ) with Ψ2 (·) in (32) where Γ2ij (·) is obtained in

Corollary 2.
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